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Abstract— This paper deals to present an advanced control in 

predictive control application. This control method is mainly 

based on the prediction model and the objective function to 

drive the nearest output possible of the trajectory in the sense 

of least square within. We are interested in evaluating the 

performance of these control technique and their applications 

on dynamic systems.  
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I. INTRODUCTION 

Model Predictive Control (MPC) is an advanced 

approach command [1], and all commands carries this name, 

predictive control is the most used in industry, both for the 

technical qualities and for its performance that permit an 

ease implementation. Its scope extends to all industries, in 

particular where PID control is not effective. 

Since the 1970, the predictive control has been 

successfully used in various industrial applications and for 

many fields of activities. A study on MPC lead by [2, 3] 

reported that there were over 4500 applications worldwide 

in 2003, mainly in oil refineries, petrochemical plants, 

automotive, defense, metallurgy, and other areas. In these 

industries, MPC has become the method of choice for 

difficult multivariable control problems that include 

inequality constraints. The idea of predictive control is 

already between the lines of the founder of the optimal 

control with its form of predictive control based on a model 

using a linear programming approach work [4], [5]. 

Historically, this idea will be implemented industrially 

with Richalet in 1978 IDCOM software ‘identification-

control’ [6]. The formalism is then used to consider linear 

systems such as Finite Impulse Response filters ‘FIR’. The 

costs considered are quadratic; the estimation part is based 

on a least squares approach. In 1980 appears DMC 

‘Dynamic Matrix Control’ [7]. DMC gets IDCOM many 

ideas, but the systems are represented by their response to 

the step. In both approaches, the model was of black box 

type, objective was to pursue a reference but the constraints 

were not taken into account. Shortly after, [8] give a detailed 

description of the algorithm Quadratic Dynamic Matrix 

Control (QDMC). This formulation as a quadratic problem 

directly implements the constraints of manipulated variable 

and output, and appears as the second generation of this 

variety of command. In 1987 appears Generalized Predictive 

Control ‘GPC’, developed by [9]. In 1988, it is possible to 

consider systems as state model by SMOC (Shell 

Multivariable Optimizing Control). Predictive functional 

control ‘PFC’ developed by Richalet and ADERSA [10, 11]. 

Global predictive control (GlobPC) is the newest member of 

the family of predictive controls receding horizon. It is a 

developed control law in order to increase the flexibility and 

performance while reducing restrictions and control for 

multivariable systems [12]. 

One of the most popular controls is Generalized 

Predictive Control ‘GPC’ [13]. The name GPC is used by 

[9]-as already mentioned-in their formulation proposed for 

model predictive control. The name GPC has since been 

widely adopted as a designation of a class of methods of 

predictive control to adaptive characters. 

The principle of predictive control is the creation of an 

anticipatory effect. The implementation of this command 

requires: 

• The prediction model used is CARIMA. It’s an 

extension of CARMA model, which is 

incorporated an integral effect to eliminate the 

system deviation of the effect of constants 

disturbance. 

• Use of the prediction horizon greater than delay. 

• Recursively solving DIOPHANTINE equation. 

• The introduction of the weighting increments in the 

test control. 

• The choice of the control horizon from which all 

control increments are taken equal zero. 

 

II. PRINCIPLES OF THE GPC CONTROL 

Predictive control is repeated at every time 

resolution of optimal control problem: ‘How to get 

from the current state to a goal of optimally satisfying 

the constraints [14]. GPC is based on the model of the 

process used for the purpose of predicting the behavior 

of the process. The basic idea is shown in Figure (1), 

the controller predictive calculates the future control 

sequence which results from the process output. Only 

the first element of the command sequence is applied, 

and the remainder rejected as another sequence is ready 
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in the future instants and this principle is known by the 

receding horizon. 

A. Principle of The Receding Horizon 

The principle the receding horizon is a completely 

original procedure distinguishes predictive control from 

the other control techniques. The idea is to fix a finite 

horizon N, and considering the current state as the initial 

state, to optimize a cost function over this interval, while 

respecting the constraints. This results in an optimal 

sequence of N orders of which only the first value will be 

effectively implemented. As time progresses, the 

prediction horizon slides and a new optimization problem 

is solved by considering the state of the updated system. 

In summary, at each step, it is necessary to develop a 

sequence of optimal open-loop controls, refined 

systematically by the arrival of these measures (Fig. 1). 

B. The Process Model 

In predictive controllers, several models of the 

process can be applied, the implementation of the GPC is 

made from a model represented in a form of transfer 

function.  

y�t�  �  ��� 	
 ���� 	
 � u�t 
 1�                      (1) 

With y (t) process output, u (t) the control system, � �� lag 

operator. 

And defined polynomials such that: 

� ��� �� � �  1 � ��� �� ��� ��� –���� �� � �  �� � ��� �� ��� ��� –� �            (2) 

The prediction can be expressed like: 

��� �  /��  �  "�# 	
 �$�# 	
 � %�� �  
 1/��             (3) 

To separate the effect of past and future manipulated 

variable, a Diophantine equation must be solved.  

 

 

Fig.  1. Principle of the receding horizon 

 

"�# 	
 �$�# 	
 � � E'�� ��� � � –'(� )*�# 	
 ��*�# 	
 �                     (4) 

 Replacing in the prediction output, one gets: 

�+�� � k/t� �  E'�� ���. %�. � / 
 1/t� � )*0# 	
 1��# 	
 � u�t� (5) 

This model is ready to describe an unstable model, and 

another advantage is that the numbers of 

parameters required are limited. The disadvantage of this 

model is that the order of the polynomials A and B must be 

known a priori. 

C. Disturbance Model 

The disturbance model has a 

special importance in predictive controllers. The most 

general is the CARIMA model (Controlled 

Autoregressive Moving Average), wherein the difference 

between the measured output and the output calculated 

by the model of the process is given by: 

2���  �  3�# 	
 �4�# 	
 � 5�� �                        (6) 

Hence the denominator 6�� �� � includes the integrator 

usually chosen as �1 
 � �� �A�� �� �, ξ (t) is white noise 

with zero mean value, and the polynomial C is identified or 

selected as a parameter controller. To calculate the predicted 

error, the following Diophantine equation must be solved: 

3�# 	
 �4�# 	
 � � E'�� ��� � � –' )*�# 	
 �8�# 	
 �               (7) 

The predicted disturbance is: 

2+ 9� � ':; �  30# 	
 14�# 	
 � 5 9� � ':; �  E'�� ���5 9� � ':; �)*�# 	
 �8�# 	
 � 5�� �               (8) 

And as the order of polynomials is E' <   and ξ (t) is 

white noise, the value expressed in the first term to the right 

is equal to 0, and the prediction of future disturbance is 

2+ 9� � ':; �  )*�# 	
 �8�# 	
 � 5�� �                  (9) 

III. DEVELOPMENT OF PREDICTORS 

For simplicity in developing =�> �� � is selected as equal 

to 1, the model obtained is: 

?��> �� ����� �  ��> �� �> �@%�� 
 1� � 5���/∆B      (10) 

To derive the predictor j-step, we consider the identity 

1 � CD�> �� ��E�> ��� � > �DFD�> ���             (11) 
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With �E�> ��� � ∆��> �� � CD�> �� � : is a polynomial of order (G 
 1), and�> ��� : is a 

polynomial of order (na). 

Multiplying the equation (10) by the term ∆C�> �� �> �D, 
one gets: 

�E�> �� �CD�> �� ���� � G� �  CD�> �� ���> �� �∆%�� � G 
H−1�CG> 
1 5��G                     (12) 

We therefore deduce the output equation y (t + 1) 

��� � G� � FD�> �� ����� � CD�> �� ���> �� �∆%�� � G 
H−1�CG> 
1 5��G     (13) 

Since CD�> �� � is of degree (j-1) the noise term CD�> �� �I�� � G� of the equation (13) is found to future 

instants, the best prediction of y (t + j) is as follows: 

�J�� � G/�� � KD�> �� � ∆%�� � G 
 H 
 1� � LD�� � G�   (14) 

With: ∆%�� � G 
 H 
 1� �  %�� � G 
 H 
 1� 
%�� � G 
 H 
 2�, for  1 N G N OP 

KD�> �� � � CD�> �� ���> �� �, LD�� � G� � FD�> �� �����, for  G � 1. . . . OQ 

FD�> �� � � LD,� � LD,�> �� ��� LD,�S> ��S , CD�> �� � �ID,� � ID,�> �� ��� ID,D��> –�D��� 
Therefore to long horizon, the prediction is gotten by the 

recursive calculation of the polynomialKD�> �� � and the 

function  LD�� � G�. 
To calculate KD(��> �� � � CD(��> �� ���> �� � and  LD(��� � G� � FD(��� � G �����, one proceeds the recursion 

equation Diophantine used previously. 

IV. THE FREE AND FORCED RESPONSE (RESOLUTION 

OF THE DIOPHANTIENNES EQUATIONS) 

In the GPC the prediction is required to estimate the 

future output with its disruptions. Combining the model of 

the process and the model of disruption, one draws the 

prediction to estimate the future value of the output based on 

the available information more the instant of the time 

present t. taking the model function of transfer and the 

CARIMA model, the output of the process is given by:     

3�# 	
 �4�# 	
 � � E'�� ��� � � –' )*�# 	
 �8�# 	
 �                 (15) 

���� �  "0# 	
 1$�# 	
 � %�� 
 1� � 3�# 	
 �4�# 	
 � 5�� �            (16) 

Of where, 6�� �� � � �1 
 � �� ���� �� � and the delay 

of the process is included in the B polynomial by 0 value 

given to the first coefficient to the polynomial. The 

prediction can be separate like continuation: 

�+�� � k/t� �  "0# 	
 1$�# 	
 � %�� �  
 1� � 30# 	
 14�# 	
 � 5 9� � ':; (17) 

1 � T*0# 	
14�# 	
 �3�# 	
 �  � � –' )*�# 	
 �U�# 	
 �               (18) 

Multiplying the equation (17) by (18), one gets: 

�+�� � k/t� �  T*0# 	
14�# 	
 �3�# 	
 � V"0# 	
 1$�# 	
 � . %�� �  
 1� �=� 
1 6� 
1 5� �kt�� –kFk�� 
1 �C�� 
1 ��� 
1 �� 
1 .%� � 
 1�=� 
1 6� 
1 5� �kt                    (19) 

Which is equivalent to : 

�+�� � k/t� � VT*0# 	
1"0# 	
 10��# 	
13�# 	
 � %�� �  
 1� �Ek5� �k�Fk�� 
1 �C�� 
1 ��� 
1 �� 
1 %� 
1�=� 
1 6� 
1 5�  (20) 

Whereas the value expressed in the second term of the 

first row is equal to 0 and the term in braces in the second 

row is equal to the current output of the process, the 

prediction of the process output is given by: 

�+�� � k/t� � T*0# 	
1"0# 	
 13�# 	
 � %�� �  
 1� � )*0# 	
 1U�# 	
 � ����                        
(21) 

The effect of the command includes the first term on the 

right. To separate the effect of the action of past and future 

command, the following Diophantine equation must be 

solved. 

T*0# 	
1"0# 	
 13�# 	
 � � G'�� ��� � � �� Z*0# 	
 1U�# 	
 �               (22) 

The final form of the prediction is: 

�+�� � k/t� � G'�� ���Δ%�� �  
 1� � Z*0# 	
 1U�# 	
 � Δ%�� 
1�Fk� 
1 C� 
1 y�             (23) 

The first term on the right is called the forced response 

and the rest called the free response. Free response 

expresses the prediction of process output based on past 

manipulated variable and assumes constant to keep the last 

command. Free response also includes disturbances already 

measured and their effects on future output (expressed in the 

last term prediction). The forced response is the prediction 

generated by the current and future command. 
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The output of the process is influenced by the command 

u (t) after a period of one sampling d+1. The values, O�, OQ and  OPdefining the horizon can be defined by: O� �H � 1, OQ � H � O and  OP � O. For simplicity, we take N1 

=1 and N2 =N. 

From equation (14) we obtained 

\]̂
]_ �J 9� � @(�` ; � K@(��> �� � ∆%�� � � L@(������J 9� � @(Q` ; � K@(Q�> �� � ∆%�� � � L@(Q����a�J 9� � @(b` ; � K@(b�> �� � ∆%�� � � L@(b����

�       (24) 

The resulting predictive model is expressed as follows 

Vector writing 

�J  � K∆% � L                     (25) 

The matrix G is lower triangular (O c  O) 

K � d e� 0 �  0e� e� �  0aeb�� aeb�Q a a� e�g  ; gi j =g j    for  j =0,1, . . . . N
 h,  gi j =0     for  G i h 

V. OPTIMIZATION CRITERION AND OBTAINING 

COMMAND 

Once the predictions, we must find the future control 

sequence to be applied to the system to achieve the desired 

along the reference path with a desired optimum method. 

For this, just minimize a cost function that differs according 

to the methods but generally this function contains the 

squared errors between the reference trajectory and 

predictions on the prediction horizon and the variation of the 

command. 

This cost function is: 

j�O�, OQ, OP� � ∑ 0�+�� � G/�� 
 l�� � G�1QbmDnb
 �o∑ �p%�� � G 
 1��QbqDn�                     (26) 

With y+�t � j/t� : predicted output at time (t +j), w�t � j�: 
reference trajectory,Δu�t � j 
 1� : Increment command at 

time �� � G 
  1�,o: Weighting coefficient command signal, 

N1 and N 2: minimum and Maximum horizon prediction, Nu 

: Horizon prediction on the command. 

Analytical minimization of this function provides the 

sequence of future command which only the first is actually 

applied to the system. The procedure is iterated again the 

next sampling period according to the principle of receding 

horizon. 

 

The criteria previously introduced under analytic shape 

(26) can write also under matrix shape as: 

j �  0K% �  L –  l1t �K% �  L 
  l�  � o %t%       (27) 

With l �  ?l �� � 1� l�� �  2� . . l �� �  O�Bt 

The optimal solution is gotten then by derivation of (27) 

in relation to the vector of command increments: 

j �  9%JtKt  �  0L –  l1t;  �K%J  � �L 
  l��  � o %Jt%J  

(28) 

j �  %Jt�KtK �  ou� %J  � %JtKt�L 
  l� � 0L –  l1tK%J �L – l. L – l           (29) 

vwvPx  �  2�KtK �  ou� %J  � 2Kt�L 
  l� y 0       (30) 

The optimal solution is: 

∆%z{` � �KtK �  ou��� Kt�L 
  l�           (31) 

Thus only G and f are necessary to determine the vector 

of increments optimal to apply, of which ∆%z{`���that 

represents the first element of the vector that will be 

confirmed to apply to the manipulated variable of the 

controlled process; 

∆%z{`��� � /� �L 
  l�                  (32) 

With K1 is the first line of the matrix control K 

                                   / � �KtK �  ou��� Kt               (33) 

The sequence of predicted future command will: 

%��� � %�� 
 1��/� �L 
  l�               (34) 

VI. CHOICE OF SYNTHESIS PARAMETERS [ 9, 13] 

A. choice of Minimum Horizon of Prediction (P1) 

 If the delay time (d) is exactly known, it is 

unnecessary to set p1 less than d because it would be 

unnecessary calculations in the corresponding output that 

cannot be affected by the first action u (t). If d is not known 

or is variable, p1 can be set to 1. 

 

B. Choosing The Maximum Horizon of Prediction 

(P2)  

For a system representative of pure delay on any path we 

take p1= 1, the maximum horizon of prediction is chosen so 

that |} c ~� is equal to the maximum response time in open 

loop for each channel. Where ~� is the sampling time of the 

controller. It should be noted that more p2 the greater the 

computing time is long: 
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OLRT � pQ c T� � pQ��� � OLRT/T�            (35) 

C. Choice of The Control Horizon (m): 

For simple process, to take control horizon m equal to 1 

often gives good results, on the other hand, for complex 

processes m must be equal to at least the number of unstable 

poles or poorly damped. The control horizon should not in 

any case have a value greater than the maximum prediction 

horizon. 

D.  Choice of Control Weighting λ: 

The problem with this parameter is that it determines 

(with p2) the dynamics of the closed loop system a very 

precise manner. 

Indeed, we can say that more λ is high, more the response 

time of the system is long, and however, there is no direct 

relationship between this parameter and the response time. 

If the value of λ is related to the gain of the system, it 

remains to extend this finding to the multivariate case where 

the prediction horizon control m is different from "1" while 

maintaining good performance robustness. We can also 

report increasing λ returns to increase the constraint on the 

command, the case λ = 0 unrealistic returns to put no 

constraint. Note finally that the matrix λ plays an important 

role in the packaging of the digital method since it occurs in 

the matrix �� c � �  � that must be reversed. 

VII. CONSTRAINTS ON THE CONTROL AND OUTPUT 

SYSTEM 

In all predictive control techniques, input variables, states 

and outputs of a system are often constrained by their field 

definitions. These constraints are of various kinds: physical 

limitations of the actuators, specification of product quality, 

safety requirements and tolerance range for output, etc. For 

example, in practice, the control signal must satisfy the 

constraint domain of validity of the actuator. 

A. Constraints on the amplitude of the control signal 

Constraints on the amplitude of the control, fairly 

frequent in practice, can be expressed by the inequality 

( )min max≤ ≤u u t u
 
                    (36) 

These constraints are satisfied over the whole horizon of 

prediction, where 

   
Tu(t) [u(t)u(t 1)...u(t m 1)]= + + −          (37) 

B. Constraints on The Speed of  Variation of The 

Control Signal. 

The constraints on the increase of the control signal take 

a very simple form, and can be expressed by the inequality: 

 ( ) ( )min maxu u t u t 1 u∆ ≤ − − ≤ ∆             (38) 

Or in the vector form on the variations ∆u (t) 

 ( )min maxu U t u≤ ∆ ≤ ∆                         (39) 

C. Constraints on the magnitude of the output 

 It is very frequent to find as desired specification in the 

controlled process that their output is around a wanted 

trajectory, for example, in the case of pursuit of a profile 

with a certain tolerance. This type of condition can be 

introduced for the control to forcing the output of the 

system. It understood at all times in the band constituted by 

the trajectory more or less tolerance. This type of constraint 

results in an inequality as: 

 ( ) ( ) ( )
min max

y t y t y t≤ ≤              (40) 

Let 

 ( ) ( ) ( ) ( )
T

y t y t y t 1 y t p = + + �        (41) 

Where obviously, 

( ) ( ) ( ) ( )min min minmin
y t y t 1 y t 2 ...y t p = + + +    

(42) 

( ) ( ) ( ) ( )max max maxmax
y t y t 1 y t 2 ...y t p = + + +  (43) 

Increments relative to the control variable such a 

constraint can be written: 

 ( ) ( ) ( ) ( )
min max

y t G U t f t y t≤ ∆ + ≤         (44) 

Where f is the output of the free response. 

VIII. SIMULATION RESULTS OF A HIGHER 

ORDER  PROCESS 

Consider the third order process with an integrator  

w�p� � �.Q���.Q�(����                  (45) 

Simulation parameters: .� � 1 : sampling time;  �� �400 simulation time; �� � 0: the delay; N� � 1;NQ � 30: 
Horizon output; OP � 2: command horizon. 

The figures (2 and 3) show the predicted output for 

constant and variable reference. The constant trajectory is 

take with a value of r=1. In the variable trajectory r is 

changed between 1 and 1.5. Use a variable trajectory is for 

the goal to examine effectiveness to follow; it can be seen 

that the two cases constant and variable trajectory provide a 

faster response without oscillation while a variable 

trajectory gives bigger control action.     
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In addition to follow trajectory, a controller should be 

capable of rejecting unexpected disturbance that cause the 

process to deviate from the desired operating conditions. 

The figures (4 and 5) show a simulation under disturbance 

with constant and variable trajectory where a disturbance 

occurs from [(t=70 to t=110 and t=270 to t=310) and (t=70 

to t= 90 and t=270 to t=290)] for constant variable trajectory 

respectively. The apparition of the effect of the disturbance 

on the output is shown in the figure (4.a and 5.a) is 

countered by the input until the output comes back to its 

reference. 

Figure (6) clearly shows the effect of the prediction 

horizon, the response is faster for a short horizon and 

becomes a little slow with the prediction horizon increase. 

This depends on the manipulated variable, the highest peak 

resulting by the greatest prediction horizon.  

And for the purpose of knowing the effect of the control 

horizon on the output and manipulated variable, another 

simulation is made and the figure (7) obtained shows this 

effect. The better result was with m=2, of where less this 

value (m=1) increases the RTCL and more of this value can 

cause an overtaking. 

The last simulation illustrates the effectiveness of the 

tuning of the control weighting factor when λ is increased 

(Figure 8). The first set point change is made with a value of 

λ=0. In the second change λ is changed to 0.5 and the last 

change is for λ=1. The output of the process become more 

sluggish with a small value of λ (Figure 9-a)and the input 

become strenuous while a big value of λ gives a faster 

response with a slight oscillation (Figure 9-b) and less 

vigorous input. 

                                  

a)                                                                b) 

Fig.  2 Predicted output (a) and predicted input (b) 

          

a) b) 

Fig.  3 Predicted output (a) and predicted input (b) with variable reference 
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a) b) 

Fig.  4 Predicted output (a) and predicted input (b) with disturbance for constant reference  

               

a)                                                        b) 

Fig.  5 Predicted output (a) and predicted input (b) with disturbance for variable reference 

           

a)                                                                 b) 

Fig.  6 Influence of the prediction horizon on the process output (a) and on the process input (b) 
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a)                                                                                             b) 

Fig.  7 Influence of the control horizon on the process output (a) and on the process input (b) 

           

a)                                                                                            b) 

Fig.  8 Influence of the control weighting factor on the process output (a) and on the process input (b) 

           

a)                                                                                  b) 

Fig.  9 Extension of the influence of the control weighting on the process output (a) and on the process input (b) 
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IX. DISCUSSION AND CONCLUSIONS 

The simulation results have shown the effectiveness of the 

algorithms GPC in terms of the speed of disturbance 

rejection and minimizing the error between the predicted 

output and the reference trajectory in the goal to get best 

performances. The results were simulated with the software 

Matlab/Simulink. Several parameters are exercised of which 

are taken in accounts disturbance on the system. Granting to 

results of simulation, the GPC is efficient. The choice of the 

prediction horizon, the control horizon, the control weighting 

factor and the I/O compromise are depended on each other. 

The performances of the GPC are clearly demonstrated in 

our illustrative application and of the algorithms GPC is 

considered very valuable. 
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